A three-dimensional hybrid finite element/spectral analysis of noise radiation from turbofan inlets
نویسنده
چکیده
This paper describes a new three-dimensional (3D) analysis of tonal noise radiated from non-axisymmetric turbofan inlets. The novelty of the method is in combining a standard finite element discretisation of the acoustic field in the axial and radial coordinates with a Fourier spectral representation in the circumferential direction. The boundary conditions at the farfield, fan face and acoustic liners are treated using the same spectral representation. The resulting set of discrete acoustic equations are solved employing the well-established BICGSTAB or QMR iterative algorithms and a very effective specialised preconditioner based on the axisymmetric mean geometry and flow field. Numerical examples demonstrate the suitability of the new method to engine configurations with realistic 3D features, such as relatively large degrees of asymmetry and spliced acoustic liners. The examples also illustrate the two advantages of the new method over a traditional 3D finite element approach. The new method requires a significantly smaller number of unknowns as relatively few circumferential Fourier modes in the spectral solution ensure an accurate field representation. Also, due to the effective preconditioner, the spectral linear solver benefits from stable iterations at a high rate of convergence. r 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
متن کاملAnalysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملVibration of Timoshenko Beam-Soil Foundation Interaction by Using the Spectral Element Method
This article presents an analysis of free vibration of elastically supported Timoshenko beams by using the spectral element method. The governing partial differential equation is elaborated to formulate the spectral stiffness matrix. Effectively, the non classical end boundary conditions of the beam are the primordial task to calibrate the phenomenon of the Timoshenko beam-soil foundation inter...
متن کاملStress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis
Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...
متن کاملSimulation and Experimental Study of Vibration and Noise of Pure Electric Bus Transmission based on Finite Element and Boundary Element Methods
Since the electric motor of pure electric vehicle replaced the engine, the "masking effect" disappears, and the problem of vibration and noise of the transmission becomes prominent. This is generated during the gear meshing and is transmitted to the housing through the shaft and bearing. Thereby, radiation noise of the housing are generated. The prediction and analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006